Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
1.
Sci Rep ; 14(1): 6776, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514712

RESUMO

Given the intricate etiology and pathogenesis of atopic dermatitis (AD), the complete cure of AD remains challenging. This study aimed to investigate if topically applying N-benzyl-N-methyldecan-1-amine (BMDA), derived from garlic, and its derivative [decyl-(4-methoxy-benzyl)-methyl-1-amine] (DMMA) could effectively alleviate AD-like skin lesions in 2,4-dinitrochlorobenzene (DNCB)-treated mice. Administering these compounds to the irritated skin of DNCB-treated mice significantly reduced swelling, rash, and excoriation severity, alongside a corresponding decrease in inflamed epidermis and dermis. Moreover, they inhibited spleen and lymph node enlargement and showed fewer infiltrated mast cells in the epidermis and dermis through toluidine-blue staining. Additionally, they led to a lower IgE titer in mouse sera as determined by ELISA, compared to vehicle treatment. Analyzing skin tissue from the mice revealed decreased transcript levels of inflammatory cytokines (TNF-α, IL-1ß, and IL-6), IL-4, iNOS, and COX-2, compared to control mice. Simultaneously, the compounds impeded the activation of inflammation-related signaling molecules such as JNK, p38 MAPK, and NF-κB in the mouse skin. In summary, these findings suggest that BMDA and DMMA hold the potential to be developed as a novel treatment for healing inflammatory AD.


Assuntos
Dermatite Atópica , Alho , Anidridos Maleicos , Animais , Camundongos , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/patologia , Dinitroclorobenzeno/toxicidade , Pele/patologia , Citocinas , Aminas/farmacologia , NF-kappa B/farmacologia , Camundongos Endogâmicos BALB C
2.
Nutrients ; 16(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38337735

RESUMO

Atopic dermatitis (AD) is a persistent inflammatory skin condition resulting from an intricate interplay among genetic, immunological, and environmental factors. Erigeron annuus (EA), an annual winter plant belonging to the family Asteraceae, possesses anti-inflammatory, cytoprotective, and antioxidant activities. In this study, we hypothesized that Erigeron annuus extract (EAE) could be an effective agent for ameliorating AD-like symptoms. To confirm this hypothesis in vitro, we used H2O2-stimulated human keratinocytes (HaCaT cells) to demonstrate that pre-treatment with EAE protected against oxidative stress. HaCaT cells pretreated with EAE and stimulated with H2O2 showed decreased intracellular malondialdehyde content, increased superoxide dismutase activity, and reduced intracellular reactive oxygen species accumulation. To verify the in vivo hypothesis based on the intracellular results, an AD disease mouse model was induced with 1-chloro-2,4-dinitrobenzene (DNCB), and EAE was orally administered at a non-toxic concentration according to the toxicity evaluation results. The results showed that AD disease models in BALB/c mice exhibited reduced ear epidermal thickness, scratching behavior, and mast cell infiltration. In conclusion, our results indicate that EAE has the potential to improve AD by upregulating the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway.


Assuntos
Dermatite Atópica , Erigeron , Humanos , Animais , Camundongos , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Pele/metabolismo , Dinitroclorobenzeno/toxicidade , Erigeron/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Dinitrobenzenos/efeitos adversos , Dinitrobenzenos/metabolismo , Heme Oxigenase-1/metabolismo , Peróxido de Hidrogênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Camundongos Endogâmicos BALB C , Citocinas/metabolismo
3.
Environ Toxicol ; 39(5): 3188-3197, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38356236

RESUMO

Yin chai hu (Radix Stellariae) is a root medicine that is frequently used in Chinese traditional medicine to treat fever and malnutrition. In modern medicine, it has been discovered to have anti-inflammatory, anti-allergic, and anticancer properties. In a previous study, we were able to extract lipids from Stellariae Radix using supercritical CO2 extraction (SRE), and these sterol lipids accounted for up to 88.29% of the extract. However, the impact of SRE on the development of atopic dermatitis (AD) has not yet been investigated. This study investigates the inhibitory effects of SRE on AD development using a 2,4-dinitrochlorobenzene (DNCB)-induced AD mouse model. Treatment with SRE significantly reduced the dermatitis score and histopathological changes compared with the DNCB group. The study found that treatment with SRE resulted in a decrease of pro-inflammatory cytokines TNF-α, CXC-10, IL-12, and IL-1ß in skin lesions. Additionally, immunohistochemical analysis revealed that SRE effectively suppressed M1 macrophage infiltration into the AD lesion. Furthermore, the anti-inflammatory effect of SRE was evaluated in LPS + INF-γ induced bone marrow-derived macrophages (BMDMs) M1 polarization, SRE inhibited the production of TNF-α, CXC-10, IL-12, and IL-1ß and decreased the expression of NLRP3. Additionally, SRE was found to increase p-AMPKT172, but had no effect on total AMPK expression, after administration of the AMPK inhibitor Compound C, the inhibitory effect of SRE on M1 macrophages was partially reversed. The results indicate that SRE has an inhibitory effect on AD, making it a potential therapeutic agent for this atopic disorder.


Assuntos
Dermatite Atópica , Animais , Camundongos , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/metabolismo , Dinitroclorobenzeno/toxicidade , Dinitroclorobenzeno/uso terapêutico , Proteínas Quinases Ativadas por AMP , Dióxido de Carbono/toxicidade , Dióxido de Carbono/uso terapêutico , Fator de Necrose Tumoral alfa , Citocinas/metabolismo , Macrófagos/metabolismo , Anti-Inflamatórios/uso terapêutico , Interleucina-12/toxicidade , Interleucina-12/uso terapêutico , Lipídeos , Camundongos Endogâmicos BALB C , Pele
4.
J Ethnopharmacol ; 323: 117702, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38176665

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Qing-Re-Chu-Shi Decoction (QRCSD), a traditional Chinese herbal formula, has been employed as a complementary and alternative therapy for inflammatory skin diseases. However, its active constituents and the mechanistic basis of its action on atopic dermatitis remain in adequately understood. AIM OF THE STUDY: Atopic dermatitis (AD) is an allergic dermatitis marked by eczematous lesions and pruritus. The study aimed to elucidate the underlying effects of QRCSD on AD and to identify the components responsible for its therapeutic efficacy in a mouse model. MATERIALS AND METHODS: Network pharmacology and UPLC-mass analysis were used to anticipate the pharmacological mechanisms and to identify active components of QRCSD, respectively. A DNCB-induced AD-like model was established in NC/Nga mice. QRCSD or prednisolone (as a positive control) was administered via gavage every other day from day14 to day 21. Dermatitis severity score, scratching behavior, skin barrier function, spleen index, Th1/Th2 lymphocyte ratio, and serum IgE levels were evaluated. Protein arrays, including 40 inflammatory cytokines, were performed on skin lesions, followed by confirmation experiments of Western blotting in dorsal skin lesions. RESULTS: The construction of a QRCSD-AD-Network and topological analysis firstly proposed potential targets of QRCSD acting on AD. Animal experiments demonstrated that oral administration of QRCSD ameliorated AD-like lesions, reduced epidermal thickness and mast cell count, decreased serum IgE levels, augmented tight junction protein (Claudin 1, Occludin) levels, and regulated the Th1/Th2 balance in the spleen, as well as spleen index. Elevated levels of interleukin (IL)-4, IL-5, IL-6, IL-17, and Eotaxin were revealed in AD-like skin lesions by protein arrays. Western blotting confirmed that the phosphorylation levels of ERK, P38, JNK, STAT3 and P65 were downregulated, and IL-6 expression was also reduced following QRCSD treatment. CONCLUSIONS: The study enhances the understanding of the anti-inflammatory and immunomodulatory effects of QRCSD, showcasing its significant protective role against atopic dermatitis. Treatment with QRCSD may be considered as a viable candidate for complementary and alternative therapy in managing atopic dermatitis.


Assuntos
Dermatite Atópica , Camundongos , Animais , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/patologia , Dinitroclorobenzeno/toxicidade , Pele/patologia , Interleucina-6/metabolismo , Citocinas/metabolismo , Anti-Inflamatórios/efeitos adversos , Imunoglobulina E
5.
FASEB J ; 37(10): e23210, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37738047

RESUMO

PYR-41 is an irreversible and cell permeable inhibitor of ubiquitin-activating enzyme E1, and has been reported to inhibit the degradation of IκB protein. Previous studies have shown that PYR-41 has effects on anti-inflammatory, but whether it has therapeutic effects on allergic dermatitis is unclear. The aim of this research was to explore the therapeutic effects of PYR-41 on atopic dermatitis. The effects of PYR-41 on the activation of NF-κB signaling pathway and the expression of inflammatory genes in HaCat cells were tested by western blot and qPCR. A mouse model was built, and the AD-like skin lesions were induced by 2,4-dinitrochlorobenzene (DNCB). Then, the treatment effects of PYR-41 were examined by skin severity score, ear swelling, ELISA, and qPCR. The results showed that PYR-41 can significantly reduce the K63-linked ubiquitination level of nuclear factor-κB essential modulator (NEMO) and tumor necrosis factor receptor associated factor 6 (TRAF6), inhibit the proteasomal degradation of IκBα, thereby activate TNF-α-induced NF-κB signaling pathway in HaCat cells. In addition, DNCB-treated mice have significant reduction in symptoms after treated by PYR-41, including reduced ear thickening and reduced skin damage. Serum tests showed that PYR-41 significantly reduced the expression of IgE, IFN-γ, and TNF-α. In conclusion, the current results suggest that PYR-41 has potential to reduce the symptoms of atopic dermatitis.


Assuntos
Dermatite Atópica , Dermatopatias , Animais , Camundongos , Enzimas Ativadoras de Ubiquitina , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Dinitroclorobenzeno/toxicidade , Fator de Necrose Tumoral alfa , NF-kappa B , Dermatopatias/induzido quimicamente , Dermatopatias/tratamento farmacológico
6.
Int J Mol Sci ; 24(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37569701

RESUMO

In dermatological research, 2,4-dinitrochlorbenzene (DNCB)-induced atopic dermatitis (AD) is a standard model as it displays many disease-associated characteristics of human AD. However, the reproducibility of the model is challenging due to the lack of information regarding the methodology and the description of the phenotype and endotype of the mimicked disease. In this study, a DNCB-induced mouse model was established with a detailed procedure description and classification of the AD human-like skin type. The disease was induced with 1% DNCB in the sensitization phase and repeated applications of 0.3% and 0.5% DNCB in the challenging phase which led to a mild phenotype of AD eczema. Pathophysiological changes of the dorsal skin were measured: thickening of the epidermis and dermis, altered skin barrier proteins, increased TH1 and TH2 cytokine expression, a shift in polyunsaturated fatty acids, increased pro-resolving and inflammatory mediator formation, and dysregulated inflammation-associated gene expression. A link to type I allergy reactions was evaluated by increased mast cell infiltration into the skin accompanied by elevated IgE and histamine levels in plasma. As expected for mild AD, no systemic inflammation was observed. In conclusion, this experimental setup demonstrates many features of a mild human-like extrinsic AD in murine skin.


Assuntos
Dermatite Atópica , Humanos , Animais , Camundongos , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/metabolismo , Dinitroclorobenzeno/toxicidade , Reprodutibilidade dos Testes , Imunoglobulina E/metabolismo , Pele/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças
7.
Clin Exp Pharmacol Physiol ; 50(11): 844-854, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37439364

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory skin condition with a high prevalence. Inflammation and oxidative stress are strongly associated with AD progression. Esculentoside A (EsA) inhibits inflammation and oxidative stress in various diseases. However, whether EsA mitigates AD by suppressing inflammation and oxidative stress remains unknown. A mouse model of AD was constructed by the induction of 1-chloro-2,4-dinitrochlorobenzene (DNCB). The mechanism of EsA and its effects on AD symptoms, pathology, inflammation and oxidative stress were investigated through histopathological staining, enzyme-linked immunosorbent assay, blood cells analysis, colorimetric measurement and western blot analysis. EsA improved the clinical symptoms and increased clinical skin scores in AD mice. Skin thickening of the epidermis and dermal tissues and the mast cell numbers in AD mice were reduced with the EsA treatment. EsA decreased the relative mRNA level of thymic stromal lymphopoietin, interleukin (IL)-4, IL-5 and IL-13; the serum concentrations of immunoglobulin E (IgE) and IL-6; and the numbers of white blood cells (WBC) and WBC subtypes, including basophil, lymphocytes, eosinophil, neutrophil and monocytes in DNCB-induced mice. DNCB caused higher levels of oxidative stress, which was reversed with the administration of EsA. Mechanically, EsA upregulated the expression of Nrf2 but downregulated the level of NLRP3 inflammasome in AD mice. The inhibitor of Nrf2 significantly recovered the EsA-induced changes in the NLRP3 inflammasome proteins in DNCB-treated mice. Therefore, EsA improved the clinical and pathological symptoms, inflammation and oxidative stress experienced by DNCB-induced mice and was involved in the inactivation of NLRP3 inflammasome by activating Nrf2.


Assuntos
Dermatite Atópica , Animais , Camundongos , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Dinitroclorobenzeno/toxicidade , Dinitroclorobenzeno/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Inflamassomos/metabolismo , Pele , Citocinas/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos BALB C
8.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(1): 1-14, 2023 Jan 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-36935172

RESUMO

OBJECTIVES: Ozone is widely applied to treat allergic skin diseases such as eczema, atopic dermatitis, and contact dermatitis. However, the specific mechanism remains unclear. This study aims to investigate the effects of ozonated oil on treating 2,4-dinitrochlorobenzene (DNCB)-induced allergic contact dermatitis (ACD) and the underling mechanisms. METHODS: Besides the blank control (Ctrl) group, all other mice were treated with DNCB to establish an ACD-like mouse model and were randomized into following groups: a model group, a basal oil group, an ozonated oil group, a FcεRI-overexpressed plasmid (FcεRI-OE) group, and a FcεRI empty plasmid (FcεRI-NC) group. The basal oil group and the ozonated oil group were treated with basal oil and ozonated oil, respectively. The FcεRI-OE group and the FcεRI-NC group were intradermally injected 25 µg FcεRI overexpression plasmid and 25 µg FcεRI empty plasmid when treating with ozonated oil, respectively. We recorded skin lesions daily and used reflectance confocal microscope (RCM) to evaluate thickness and inflammatory changes of skin lesions. Hematoxylin-eosin (HE) staining, real-time PCR, RNA-sequencing (RNA-seq), and immunohistochemistry were performed to detct and analyze the skin lesions. RESULTS: Ozonated oil significantly alleviated DNCB-induced ACD-like dermatitis and reduced the expressions of IFN-γ, IL-17A, IL-1ß, TNF-α, and other related inflammatory factors (all P<0.05). RNA-seq analysis revealed that ozonated oil significantly inhibited the activation of the DNCB-induced FcεRI/Syk signaling pathway, confirmed by real-time PCR and immunohistochemistry (all P<0.05). Compared with the ozonated oil group and the FcεRI-NC group, the mRNA expression levels of IFN-γ, IL-17A, IL-1ß, IL-6, TNF-α, and other inflammatory genes in the FcεRI-OE group were significantly increased (all P<0.05), and the mRNA and protein expression levels of FcεRI and Syk were significantly elevated in the FcεRI-OE group as well (all P<0.05). CONCLUSIONS: Ozonated oil significantly improves ACD-like dermatitis and alleviated DNCB-induced ACD-like dermatitis via inhibiting the FcεRI/Syk signaling pathway.


Assuntos
Dermatite Alérgica de Contato , Dermatite Atópica , Animais , Camundongos , Dinitroclorobenzeno/toxicidade , Dinitroclorobenzeno/metabolismo , Pele/metabolismo , Citocinas/metabolismo , Interleucina-17/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Dermatite Alérgica de Contato/tratamento farmacológico , Dermatite Alérgica de Contato/metabolismo , Dermatite Alérgica de Contato/patologia , Dermatite Atópica/induzido quimicamente , Transdução de Sinais , RNA Mensageiro/metabolismo , Camundongos Endogâmicos BALB C
9.
Skin Res Technol ; 29(1): e13255, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36704886

RESUMO

OBJECTIVE: To study the expression of interleukin-1ß (IL-1ß), interleukin-4 (IL-4), interferon-γ (IFN-γ) and tumour necrosis factor α (TNF-α) in different tissue in a dinitrochlorobenzene (DNCB)-induced ear swelling test in mice and further evaluate the correlation between the cytokine expression in different tissues and the degree of ear swelling. METHODS: The mice were sensitised with a 0.50% DNCB solution on their back for 3 days. After 7 days, the thickness of their ears was measured and grouped. Different concentrations of the DNCB solution were challenged in the left ear of each group of mice, and the right ear was used as the control. The thickness of both ears was measured every 24 h, and the mice were sacrificed 72 h after the challenge. The expressions of IL-1ß, IL-4, IFN-γ and TNF-α in the mouse serum, lymph node and ear tissue were quantified by enzyme-linked immunosorbent assay, respectively. RESULTS: There was a linear positive correlation between the swelling index of the mouse lateral ear and the challenge concentration of DNCB (r = 0.96, p < 0.01). The high expression of IL-1ß and IL-4 in the lateral ear tissue of the mice was positively correlated with the ear swelling index 48 h after the challenge. The correlation coefficient was 0.78 (p < 0.01). Furthermore, IFN-γ and TNF-α had no significant correlation with the ear swelling index 48 h after the challenge. CONCLUSION: There is a correlation between the degree of ear swelling in mice and the concentration of DNCB and the expression of IL-1ß and IL-4 in the lateral ear tissue. There is a sub-clinical skin sensitivity state in contact allergy.


Assuntos
Dinitroclorobenzeno , Fator de Necrose Tumoral alfa , Camundongos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Dinitroclorobenzeno/toxicidade , Interferon gama/metabolismo , Interleucina-4 , Interleucina-1beta , Citocinas/metabolismo
10.
Biomed Environ Sci ; 35(11): 1038-1050, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36443256

RESUMO

Objective: The effect of oral cadmium (Cd) intake to influence contact skin allergies was examined, since it is known that Cd is a heavy metal that affects many tissues, including the skin, in which it disturbs homeostasis, thus resulting in inflammation and injury. Methods: Male rats were evoked with experimental contact hypersensitivity reaction (CHS) to hapten dinitrochlorobenzene (DNCB), after prolonged (30 day) oral exposure to an environmentally relevant Cd dose (5 ppm). The ear cell population was analyzed with flow cytometry. Cytokine production by ear skin cells and the activity of skin-draining lymph node (DLN) cells were measured using enzyme-linked immunosorbent assay (ELISA). Results: Orally acquired Cd (5 ppm) increased CHS intensity only in Dark Agouti (DA) rats by affecting inflammatory responses in both the sensitization (an increase of IFN-γ and IL-17 cytokine production) and challenge (an increase of CD8 + and CD4 + cell number and TNF, IFN-γ and IL-17 cytokine production) phases. An increased CHS reaction was seen in Albino Oxford (AO) rats only at a high Cd dose (50 ppm), during the challenge phase (an increase of CD8 + and CD4 + cell number and TNF, IFN-γ and IL-17 cytokine production). Conclusion: These novel data indicate that oral Cd intensifies the skin response to sensitizing chemicals such as DNCB.


Assuntos
Alérgenos , Cádmio , Masculino , Ratos , Animais , Alérgenos/toxicidade , Cádmio/toxicidade , Dinitroclorobenzeno/toxicidade , Interleucina-17 , Citocinas
11.
Int J Mol Sci ; 23(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36077254

RESUMO

Boswellic acids, triterpenoids derived from the genus Boswellia (Burseraceae), are known for their anti-inflammatory and anti-tumor efficacy. Atopic dermatitis is a chronic, non-infectious inflammatory skin disease. However, the effects of α-boswellic acid on atopic dermatitis have not been studied. Therefore, in this study we examined the expression level of pro-inflammatory cytokines, histopathological analysis, and physiological data from BALB/c mice with atopic-like dermatitis induced by 2,4-dinitrochlorobenzene and TNF-α/IFN-γ-stimulated HaCaT cells to better understand the agent's anti-atopic dermatitis efficacy. First, we found that α-boswellic reduced the epidermal thickening, mast cell numbers, and dermal infiltration of 2,4-dinitrochlorobenzene-induced atopic-like dermatitis in BALB/c mice. Furthermore, we also found that α-boswellic acid can restore transepidermal water loss and skin reddening in mice. In human keratinocytes inflamed by TNF-α/IFN-γ, α-boswellic acid inhibited MAP kinase activation and showed a reduction in NF-κB nuclear translocation. Finally, α-boswellic acid can reduce the expression level of cytokines (IL-1ß, IL-6, and IL-8) following the stimulation of TNF-α/IFN-γ in HaCaT cells. Taken together, our study suggests that α-boswellic acids are a potential component for the development of anti-atopic dermatitis drugs.


Assuntos
Dermatite Atópica , Triterpenos , Animais , Citocinas/metabolismo , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/metabolismo , Dinitroclorobenzeno/toxicidade , Células HaCaT , Humanos , Interferon gama/genética , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Pele/metabolismo , Triterpenos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
12.
Biomed Pharmacother ; 154: 113574, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36057224

RESUMO

Atopic dermatitis (AD) is a highly prevalent inflammatory skin disease worldwide. Recent studies have suggested an important role for association with the gut and skin microbiome axis in AD development. Paeonia lactiflora Pallas extract (PL) is commonly used for the treatment of inflammatory diseases. However, the possible mechanisms by which PL can alleviate AD by regulating the gut microbiota have not been investigated. In this study, we aimed to investigate the therapeutic effects and underlying mechanism of PL in mice with antibiotic cocktail (ABX)-induced AD. The effects of PL were evaluated in bone marrow-derived macrophages (BMDMs) and ABX and dinitrochlorobenzene (DNCB) mouse models. PL suppressed inflammatory cytokine and NO production in LPS-treated BMDMs. Moreover, PL attenuated scoring atopic dermatitis (SCORAD) scores, epidermal thickness, white blood cell counts and the disease activity index (DAI) in ABX-induced AD mice. Meanwhile, PL decreased IL-17A production, induced Foxp3 expression and improved intestinal barrier integrity by especially increasing the expression of tight junction proteins such as ZO-1 and occludin. Additionally, PL partially increased the diversity of the gut microbiota and changed the microbial composition. Our findings suggest that PL may be a potential natural product that can ameliorate atopic dermatitis symptoms by suppressing inflammatory cytokine production, inducing Foxp3 expression, increasing intestinal barrier integrity and changing the gut microbiota composition.


Assuntos
Dermatite Atópica , Microbioma Gastrointestinal , Paeonia , Animais , Antibacterianos/uso terapêutico , Anti-Inflamatórios/efeitos adversos , Citocinas/metabolismo , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/metabolismo , Dinitroclorobenzeno/toxicidade , Fatores de Transcrição Forkhead/metabolismo , Imunoglobulina E , Inflamação/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Pele
13.
J Ethnopharmacol ; 291: 115160, 2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35245629

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Artemisia annua L. (A. annua) is a traditional Chinese medicine that has been used since ancient times to treat malaria, eczema, dermatomycosis, jaundice, and boils. Modern pharmacological studies show that it has immunosuppressive and anti-inflammatory effects. However, the mechanism of A. annua in the treatment of atopic dermatitis (AD) remains unclear. AIM OF THE STUDY: This study was aimed to investigate the effect of A. annua water extract (AWE) on 2,4-dinitrochlorobenzene (DNCB)-induced AD mouse model and tried to explore its possible underlying mechanisms. MATERIALS AND METHODS: AD was induced in BALB/c mice by the topical repeated application of DNCB. Oral drug intervention of AWE and dexamethasone (DEX, positive control) began from the 7th day and continued for 13 consecutive days. The clinical skin score, ear thickness and the weight of ear and spleen were assessed. The ear tissue were stained with toluidine blue and hematoxylin and eosin (H&E) to detect inflammatory cell infiltration. IgE, terleukin (IL)-4 and IL-13 levels in the serum and IgE level in splenocytes were quantified by enzyme-linked immunosorbent assay (ELISA). The mRNA expression levels of IL-4, IL-6, IL-13, IL-17, tumor necrosis factor (TNF)-α and thymic stromal lymphopoietin (TSLP) were measured by quantitative real time polymerase chain reaction. The phosphorylation levels of mitogen-activated protein kinases (MAPKs)-p38 and nuclear factor (NF)-κB in ear tissue were detected by Western blot. RESULTS: Results demonstrated that AWE treatment significantly attenuated the AD-like symptoms in DNCB-induced BALB/c mice, including the skin dermatitis severity and ear edema. Further study disclosed that AWE treatment suppressed the expressions of IgE, IL-4, IL-6, IL-13, IL-17, TNF-α and TSLP at mRNA and protein levels. Moreover, AWE showed inhibitory effect on the phosphorylation of p38 MAPK and NFκB in ear tissues of AD mice. CONCLUSIONS: Collectively, our results suggested that AWE suppressed DNCB-induced AD in mice probably by restraining Th2 type inflammatory response. These findings might pave the road for the potential clinical application of AWE for AD treatment.


Assuntos
Artemisia annua , Dermatite Atópica , Eczema , Animais , Citocinas/metabolismo , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/metabolismo , Dinitroclorobenzeno/toxicidade , Eczema/metabolismo , Eczema/patologia , Camundongos , Camundongos Endogâmicos BALB C , Pele/patologia , Células Th2/metabolismo , Água/farmacologia
14.
Life Sci ; 288: 120205, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34871665

RESUMO

AIMS: This study was aimed to explore whether sacran polysaccharide has a therapeutic effect on atopic dermatitis (AD) and its possible mechanisms. MATERIALS AND METHODS: 2, 4-dinitrochlorobenzene (DNCB)-induced AD mice were treated with 0.2% Sacran, 0.5% Sacran and 0.1% tacrolimus. Through scoring dermatitis severity, measuring ear thickness, cracking behavior, open field test, we evaluated the therapeutic effect of Sacran on DNCB-induced AD mice. CD4+ T cells and CD8+ T cells were evaluated by flow cytometry. The relative expression of Ifng and Il4 were measured by real-time quantitative PCR. KEY FINDINGS: Sacran could relieved the symptoms of DNCB-induced AD mice, such as AD score, ear thickness, and IgE release. Sacran may alleviate dermatitis by inhibiting Th2 activation and reducing IgE release. SIGNIFICANCE: Our research further proved that polysaccharide Sacran has anti-dermatitis effects, and also clarified its mechanism of alleviating dermatitis by inhibiting the activation of Th2 cells and reducing the release of IgE, which provides a theoretical basis for the future clinical transformation of polysaccharide Sacran.


Assuntos
Dermatite Atópica/tratamento farmacológico , Dinitroclorobenzeno/toxicidade , Imunoglobulina E/metabolismo , Inflamação/prevenção & controle , Polissacarídeos/farmacologia , Células Th2/imunologia , Animais , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/imunologia , Dermatite Atópica/patologia , Feminino , Indicadores e Reagentes/toxicidade , Inflamação/etiologia , Camundongos , Camundongos Endogâmicos BALB C , Células Th2/efeitos dos fármacos
15.
J Ethnopharmacol ; 283: 114687, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34600077

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Panax ginseng C.A.Mey. (Korea red ginseng) has been used in Asia to treat inflammatory skin diseases. Recently, Korea red ginseng (KRG) is emerging as a good candidate for treating atopic dermatitis (AD) because of its anti-allergic and anti-inflammatory effects. AIM OF THE STUDY: Despite much effort, no systemic prevention strategy has been established for AD currently. Therefore, the aim of this study was to determine the preventive effect of a combination of KRG extract and probiotics on AD-like skin lesions of mice. MATERIALS AND METHODS: Forty NC/Nga mice were randomly divided into eight groups: Sham, AD control, Cyclosporine, KRG, Duolac ATP® (ATP), BYO Plant Origin Skin Probiotics (BYO), KRG + ATP, and KRG + BYO. Mice were administered orally with KRG and/or other agents using a gastric tube for 5 days prior to challenge with 1-chloro-2,4-dinitrobenzene (DNCB). AD-like skin lesions were induced by percutaneous challenge with DNCB on ears and backs of NC/Nga mice. Effects of each treatment were evaluated based on the following: Clinical severity score, ear thickness, transepidermal water loss (TEWL), total serum Immunoglobulin E (IgE) level, mRNA expression levels and immunohistochemistry analysis of IFN-γ, IL-4, and TSLP in cutaneous lesions. RESULTS: TEWL, serum IgE level, and expression of immunohistopathologic markers were more improved in the group using KRG combined with probiotics than in the group using KRG or probiotics alone. ATP, KRG + ATP, and KRG + BYO groups showed reduced TEWL increase (ΔTEWL) at 48 h (p < 0.005). KRG + ATP showed a preventive effect on the increase of serum IgE level (p = 0.009). In immunohistopathologic analysis, KRG, ATP, BYO, KRG + ATP, and KRG + BYO groups showed significantly reduced expression levels of IFN-γ at 1 h, 6 h, and 48 h (all p < 0.05). KRG, ATP, BYO, and KRG + BYO groups showed reduced expression levels of IL-4 compared to the AD control group at 6 h and 24 h. KRG, ATP, BYO, KRG + ATP, and KRG + BYP groups showed significantly lower expression levels of TSLP than the AD control group at 1 h and 24 h. CONCLUSION: KRG can suppress increases of allergic and inflammatory cytokines and increase of TEWL. A combination of KRG and probiotics might have better effects than KRG or probiotics alone for preventing an AD flare-up.


Assuntos
Dermatite Atópica/prevenção & controle , Panax/química , Fitoterapia , Extratos Vegetais/farmacologia , Probióticos/uso terapêutico , Animais , Biomarcadores/metabolismo , Ciclosporina/uso terapêutico , Dermatite Atópica/induzido quimicamente , Dinitroclorobenzeno/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Imunoglobulina E , Imunossupressores/uso terapêutico , Masculino , Camundongos , Extratos Vegetais/química , Distribuição Aleatória
16.
Int Immunopharmacol ; 101(Pt B): 108362, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34801417

RESUMO

Atopic dermatitis (AD) is a T helper (Th) 2 cell-mediated allergic disease, which features increased number of immunocytes and level of Th2-associated cytokines. Fucoidan is well known a naturally occurring agent effectively ameliorating many AD symptoms. Though these alleviative effects are exhilarating, the mechanisms behind, however, are still rather limited. In this study, we report that fucoidan derived from Cladosiphon okamuranus (FT) inhibits nitric oxide (NO) production by exerting its anti-inflammatory ability. Topical application on animals show that FT promotes skin repair, reduces immunocyte proliferation, and decreases serum IgE level. In histological analysis, FT favorably reduces epidermal hyperplasia and eosinophilic infiltration. The pharmacodynamics mechanism of FT is determined by means of down-regulating AD-associated cytokines (IL-4, IL-5, IL-22, IL-33, and TSLP) and up-regulating TGF-ß1 level. Moreover, FT can regulate systemic immunity by enhancing tolerogenic dendritic cells (Tol-DCs) to activate regulatory T cells (Treg) differentiation and to decrease the population of Th22 and memory B cells. Overall, topical application of FT is able to enhance Treg secreting TGF-ß1 and to down-regulate Th2 cell-mediated immunity so that AD symptoms are significantly alleviated. Thereby, FT is an ideal drug candidate potentially replacing or complementing corticosteroids to be developed and used as a therapeutic agent to treat AD.


Assuntos
Dermatite Atópica/tratamento farmacológico , Polissacarídeos/administração & dosagem , Polissacarídeos/uso terapêutico , Alga Marinha/química , Administração Tópica , Animais , Antiulcerosos/administração & dosagem , Antiulcerosos/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Dermatite Atópica/induzido quimicamente , Dinitroclorobenzeno/toxicidade , Esquema de Medicação , Masculino , Células B de Memória/efeitos dos fármacos , Células B de Memória/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico/metabolismo , Polissacarídeos/química , Células RAW 264.7 , Linfócitos T Reguladores , Células Th2/efeitos dos fármacos , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
17.
Int J Mol Sci ; 22(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34769428

RESUMO

Oleanolic acid (OA) is a pentacyclic triterpenoid, abundantly found in plants of the Oleaceae family, and is well known for its beneficial pharmacological activities. Previously, we reported the inhibitory effect of OA on mast cell-mediated allergic inflammation. In this study, we investigated the effects of OA on atopic dermatitis (AD)-like skin lesions and its underlying mechanism of action. We evaluated the inhibitory effect of OA on AD-like responses and the possible mechanisms using a 1-chloro-2,4-dinitrochlorobenzene (DNCB)-induced AD animal model and tumor necrosis factor (TNF)-α/interferon (IFN)-γ-stimulated HaCaT keratinocytes. We found that OA has anti-atopic effects, including histological alterations, on DNCB-induced AD-like lesions in mice. Moreover, it suppressed the expression of Th2 type cytokines and chemokines in the AD mouse model and TNF-α/IFN-γ-induced HaCaT keratinocytes by blocking the activation of serine-threonine kinase Akt, nuclear factor-κB, and the signal transducer and activator of transcription 1. The results demonstrate that OA inhibits AD-like symptoms and regulates the inflammatory mediators; therefore, it may be used as an effective and attractive therapeutic agent for allergic disorders, such as AD. Moreover, the findings of this study provide novel insights into the potential pharmacological targets of OA for treating AD.


Assuntos
Citocinas/metabolismo , Dermatite Atópica/tratamento farmacológico , Inflamação/tratamento farmacológico , Queratinócitos/efeitos dos fármacos , NF-kappa B/metabolismo , Ácido Oleanólico/farmacologia , Animais , Linhagem Celular , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/metabolismo , Dermatite Atópica/patologia , Dinitroclorobenzeno/toxicidade , Modelos Animais de Doenças , Humanos , Técnicas In Vitro , Inflamação/metabolismo , Inflamação/patologia , Irritantes/toxicidade , Queratinócitos/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Transdução de Sinais
18.
Biomolecules ; 11(10)2021 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-34680082

RESUMO

Atopic dermatitis (AD) is caused by multiple factors that trigger chronic skin inflammation, including a defective skin barrier, immune cell activation, and microbial exposure. Although melatonin has an excellent biosafety profile and a potential to treat AD, there is limited clinical evidence from controlled trials that support the use of melatonin as an AD treatment. The delivery of melatonin via the transdermal delivery system is also a challenge in designing melatonin-based AD treatments. In this study, we generated melatonin-loaded extracellular vesicle-mimetic nanoparticles (MelaNVs) to improve the transdermal delivery of melatonin and to evaluate their therapeutic potential in AD. The MelaNVs were spherical nanoparticles with an average size of 100 nm, which is the optimal size for the transdermal delivery of drugs. MelaNVs showed anti-inflammatory effects by suppressing the release of TNF-α and ß-hexosaminidase in LPS-treated RAW264.7 cells and compound 48/80-treated RBL-2H3 cells, respectively. MelaNVs showed a superior suppressive effect compared to an equivalent concentration of free melatonin. Treating a 2,4-dinitrofluorobenzene (DNCB)-induced AD-like mouse model with MelaNVs improved AD by suppressing local inflammation, mast cell infiltration, and fibrosis. In addition, MelaNVs effectively suppressed serum IgE levels and regulated serum IFN-γ and IL-4 levels. Taken together, these results suggest that MelaNVs are novel and efficient transdermal delivery systems of melatonin and that MelaNVs can be used as a treatment to improve AD.


Assuntos
Dermatite Atópica/tratamento farmacológico , Vesículas Extracelulares/química , Melatonina/farmacologia , Nanopartículas/química , Administração Tópica , Animais , Biomimética , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/patologia , Dinitroclorobenzeno/toxicidade , Células HEK293 , Humanos , Melatonina/química , Camundongos , Células RAW 264.7
19.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34361003

RESUMO

Atopic dermatitis (AD) is a chronic and persistent inflammatory skin disease characterized by eczematous lesions and itching, and it has become a serious health problem. However, the common clinical treatments provide limited relief and are accompanied by adverse effects. Therefore, there is a need to develop novel and effective therapies to treat AD. Neferine is a small molecule compound isolated from the green embryo of the mature seeds of lotus (Nelumbo nucifera). It has a bisbenzylisoquinoline alkaloid structure. Relevant studies have shown that neferine has many pharmacological and biological activities, including anti-inflammatory, anti-thrombotic, and anti-diabetic activities. However, there are very few studies on neferine in the skin, especially the related effects on inflammatory skin diseases. In this study, we proved that it has the potential to be used in the treatment of atopic dermatitis. Through in vitro studies, we found that neferine inhibited the expression of cytokines and chemokines in TNF-α/IFN-γ-stimulated human keratinocyte (HaCaT) cells, and it reduced the phosphorylation of MAPK and the NF-κB signaling pathway. Through in vivo experiments, we used 2,4-dinitrochlorobenzene (DNCB) to induce atopic dermatitis-like skin inflammation in a mouse model. Our results show that neferine significantly decreased the skin barrier damage, scratching responses, and epidermal hyperplasia induced by DNCB. It significantly decreased transepidermal water loss (TEWL), erythema, blood flow, and ear thickness and increased surface skin hydration. Moreover, it also inhibited the expression of cytokines and the activation of signaling pathways. These results indicate that neferine has good potential as an alternative medicine for the treatment of atopic dermatitis or other skin-related inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Benzilisoquinolinas/farmacologia , Dermatite Atópica/tratamento farmacológico , Animais , Anti-Inflamatórios/uso terapêutico , Benzilisoquinolinas/uso terapêutico , Dermatite Atópica/etiologia , Dermatite Atópica/metabolismo , Dinitroclorobenzeno/toxicidade , Células HaCaT/efeitos dos fármacos , Células HaCaT/metabolismo , Humanos , Interferon gama/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
20.
Molecules ; 26(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34361560

RESUMO

The extracts of Schisandra chinensis (Turcz.) Baill. (Schisandraceae) have various therapeutic effects, including inflammation and allergy. In this study, gomisin M2 (GM2) was isolated from S. chinensis and its beneficial effects were assessed against atopic dermatitis (AD). We evaluated the therapeutic effects of GM2 on 2,4-dinitrochlorobenzene (DNCB) and Dermatophagoides farinae extract (DFE)-induced AD-like skin lesions with BALB/c mice ears and within the tumor necrosis factor (TNF)-α and interferon (IFN)-γ-stimulated keratinocytes. The oral administration of GM2 resulted in reduced epidermal and dermal thickness, infiltration of tissue eosinophils, mast cells, and helper T cells in AD-like lesions. GM2 suppressed the expression of IL-1ß, IL-4, IL-5, IL-6, IL-12a, and TSLP in ear tissue and the expression of IFN-γ, IL-4, and IL-17A in auricular lymph nodes. GM2 also inhibited STAT1 and NF-κB phosphorylation in DNCB/DFE-induced AD-like lesions. The oral administration of GM2 reduced levels of IgE (DFE-specific and total) and IgG2a in the mice sera, as well as protein levels of IL-4, IL-6, and TSLP in ear tissues. In TNF-α/IFN-γ-stimulated keratinocytes, GM2 significantly inhibited IL-1ß, IL-6, CXCL8, and CCL22 through the suppression of STAT1 phosphorylation and the nuclear translocation of NF-κB. Taken together, these results indicate that GM2 is a biologically active compound that exhibits inhibitory effects on skin inflammation and suggests that GM2 might serve as a remedy in inflammatory skin diseases, specifically on AD.


Assuntos
Anti-Inflamatórios/farmacologia , Ciclo-Octanos/farmacologia , Dermatite Atópica , Dermatophagoides farinae/imunologia , Derme/imunologia , Dinitroclorobenzeno/toxicidade , Epiderme/imunologia , NF-kappa B/imunologia , Fator de Transcrição STAT1/imunologia , Animais , Anti-Inflamatórios/química , Ciclo-Octanos/química , Citocinas/imunologia , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/imunologia , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...